MS/20761C : Querying Data with Transact-SQL
5 gün (30 Saat) Orta Sınıf / Online Veritabanı Geliştirme ve Sorgulama
SQL dili 1970'lerden beri ilişkisel verileri sorgulamak için kullanılan en yaygın dildir. Her türden ilişkisel veritabanlarını, büyük veri ekosistemindeki veri depolama çözümlerini ve hatta donanımları SQL dili ve türevleri ile sorgulayabilirsiniz. SQL dilinin Microsoft bakış açısıyla zenginleştirilmiş hali olan T-SQL dili sayesinde SQL Server veritabanlarını sorgulayabilir ve yeni veritabanı nesneleri oluşturabilirsiniz. "Querying Data with Transact-SQL" eğitimi ilişkisel veritabanları ile çalışan tüm uzmanlar için veritabanı sorgulama, tablo, view, function, stored procedure gibi nesneler ile çalışma, hata ve transaction yönetimi, sorgu performansını iyileştirici teknikler gibi konularda tatmin edici seviyede içerik sunar. Eğitmenlerimiz eğitimin başından sonuna kadar sizlerle birlikte SQL sorguları yazar, gerçek hayat problemlerine dikkat çeker ve eğitimden sonra bu bilgileri kullanabilmeniz için sizleri eğitim esnasında yönlendirir, teşvik eder. Dilerseniz bu eğitimin ardından Microsoft 70-761 Sınavına giriş yapabilirsiniz.
Eğitim İçeriği
Module 1: Introduction to Microsoft SQL Server
- Lessons
- The Basic Architecture of SQL Server
- SQL Server Editions and Versions
- Getting Started with SQL Server Management Studio
- Lab : Working with SQL Server Tools
- Working with SQL Server Management Studio
- Creating and Organizing T-SQL Scripts
- Using Books Online
Module 2: Introduction to T-SQL Querying
- Lessons
- Introducing T-SQL
- Understanding Sets
- Understanding Predicate Logic
- Understanding the Logical Order of Operations in SELECT statements
- Lab : Introduction to T-SQL Querying
- Executing Basic SELECT Statements
- Executing Queries that Filter Data using Predicates
- Executing Queries That Sort Data Using ORDER BY
Module 3: Writing SELECT Queries
- Lessons
- Writing Simple SELECT Statements
- Eliminating Duplicates with DISTINCT
- Using Column and Table Aliases
- Writing Simple CASE Expressions
- Lab : Writing Basic SELECT Statements
- Writing Simple SELECT Statements
- Eliminating Duplicates Using DISTINCT
- Eliminating Duplicates Using DISTINCT
- Using a Simple CASE Expression
Module 4: Querying Multiple Tables
- Lessons
- Understanding Joins
- Querying with Inner Joins
- Querying with Outer Joins
- Querying with Cross Joins and Self Joins
- Lab : Querying Multiple Tables
- Writing Queries that use Inner Joins
- Writing Queries that use Multiple-Table Inner Joins
- Writing Queries that use Self-Joins
- Writing Queries that use Outer Joins
- Writing Queries that use Cross Joins
Module 5: Sorting and Filtering Data
- Lessons
- Sorting Data
- Filtering Data with Predicates
- Filtering Data with TOP and OFFSET-FETCH
- Working with Unknown Values
- Lab : Sorting and Filtering Data
- Writing Queries that Filter Data using a WHERE Clause
- Writing Queries that Sort Data Using an ORDER BY Clause
- Writing Queries that Filter Data Using the TOP Option
- Write Queries that filter data using the OFFSET-FETCH clause
Module 6: Working with SQL Server Data Types
- Lessons
- Introducing SQL Server Data Types
- Working with Character Data
- Working with Date and Time Data
- Lab : Working with SQL Server Data Types
- Writing Queries that Return Date and Time Data
- Writing Queries that use Date and Time Functions
- Writing Queries That Return Character Data
- Writing Queries That Return Character Functions
Module 7: Using DML to Modify Data
- Lessons
- Adding Data to Tables
- Modifying and Removing Data
- Generating automatic column values
- Lab : Using DML to Modify Data
- Inserting Records with DML
- Updating and Deleting Records Using DML
Module 8: Using Built-In Functions
- Lessons
- Writing Queries with Built-In Functions
- Using Conversion Functions
- Using Logical Functions
- Using Functions to Work with NULL
- Lab : Using Built-In Functions
- Writing Queries That Use Conversion Functions
- Writing Queries that use Logical Functions
- Writing Queries that Test for Nullability
Module 9: Grouping and Aggregating Data
- Lessons
- Using Aggregate Functions
- Using the GROUP BY Clause
- Filtering Groups with HAVING
- Lab : Grouping and Aggregating Data
- Writing Queries That Use the GROUP BY Clause
- Writing Queries that Use Aggregate Functions
- Writing Queries that Use Distinct Aggregate Functions
- Writing Queries that Filter Groups with the HAVING Clause
Module 10: Using Subqueries
- Lessons
- Writing Self-Contained Subqueries
- Writing Correlated Subqueries
- Using the EXISTS Predicate with Subqueries
- Lab : Using Subqueries
- Writing Queries That Use Self-Contained Subqueries
- Writing Queries That Use Scalar and Multi-Result Subqueries
- Writing Queries That Use Correlated Subqueries and an EXISTS Clause
Module 11: Using Table Expressions
- Lessons
- Using Views
- Using Inline Table-Valued Functions
- Using Derived Tables
- Using Common Table Expressions
- Lab : Using Table Expressions
- Writing Queries That Use Views
- Writing Queries That Use Derived Tables
- Writing Queries That Use Common Table Expressions (CTEs)
- Writing Queries That Use Inline Table-Valued Expressions (TVFs)
Module 12: Using Set Operators
- Lessons
- Writing Queries with the UNION operator
- Using EXCEPT and INTERSECT
- Using APPLY
- Lab : Using Set Operators
- Writing Queries That Use UNION Set Operators and UNION ALL
- Writing Queries That Use CROSS APPLY and OUTER APPLY Operators
- Writing Queries That Use the EXCEPT and INTERSECT Operators
Module 13: Using Windows Ranking, Offset, and Aggregate Functions
- Lessons
- Creating Windows with OVER
- Exploring Window Functions
- Lab : Using Windows Ranking, Offset, and Aggregate Functions
- Writing Queries that use Ranking Functions
- Writing Queries that use Offset Functions
- Writing Queries that use Window Aggregate Functions
Module 14: Pivoting and Grouping Sets
- Lessons
- Writing Queries with PIVOT and UNPIVOT
- Working with Grouping Sets
- Lab : Pivoting and Grouping Sets
- Writing Queries that use the PIVOT Operator
- Writing Queries that use the UNPIVOT Operator
- Writing Queries that use the GROUPING SETS CUBE and ROLLUP Subclauses
Module 15: Executing Stored Procedures
- Lessons
- Querying Data with Stored Procedures
- Passing Parameters to Stored procedures
- Creating Simple Stored Procedures
- Working with Dynamic SQL
- Lab : Executing Stored Procedures
- Using the EXECUTE statement to Invoke Stored Procedures
- Passing Parameters to Stored procedures
- Executing System Stored Procedures
Module 16: Programming with T-SQL
- Lessons
- T-SQL Programming Elements
- Controlling Program Flow
- Lab : Programming with T-SQL
- Declaring Variables and Delimiting Batches
- Using Control-Of-Flow Elements
- Using Variables in a Dynamic SQL Statement
- Using Synonyms
Module 17: Implementing Error Handling
- Lessons
- Implementing T-SQL error handling
- Implementing structured exception handling
- Lab : Implementing Error Handling
- Redirecting errors with TRY/CATCH
- Using THROW to pass an error message back to a client
Module 18: Implementing Transactions
- Lessons
- Transactions and the database engines
- Controlling transactions
- Lab : Implementing Transactions
- Controlling transactions with BEGIN, COMMIT, and ROLLBACK
- Adding error handling to a CATCH block
Öncesinde Önerilenler
-
Data Analyst
Veri Okuryazarlığı, Verinin Keşfi, Modellenmesi ve Etkili Rapor Tasarlama Teknikleri
-
Data Engineer
Büyük Verinin İşlenmesi, Yönetimi, Veri Kalitesini Arttırma, Bulut Bilişim ve Veri Bilimi için Kodlama, Spark ve Hadoop gibi Dağıtık Mimariler ile Çalışma.
-
Data Scientist
Yapay Zeka, Makine Öğrenimi, Derin Öğrenme Teknikleri ile Büyük Veri Kümelerinden Desen ve Eğilim Keşfetme
-
DB Developer
Veritabanı Sorgulama, Tasarım Prensipleri ve Geliştirme
-
BI Professional
Veri kaynaklarının Keşfi, Veri Kalitesini Arttırma, ETL, Veriambarı Tasarım Prensipleri, Veri Modelleme ve Raporlama
-
Database Admin
Veritabanı yönetimi, optimizasyonu, performansı, felaketten kurtarma ve yüksek erişilebilirlik.
Bu seride öncesinde önerilen herhangi bir eğitim mevcut değil.
Sonrasında Önerilenler
-
Data Analyst
Veri Okuryazarlığı, Verinin Keşfi, Modellenmesi ve Etkili Rapor Tasarlama Teknikleri
- MS/10994B : Data Analysis Fundamentals Using Excel
- MS/20779B : Analyzing Data with Excel
- C/QSEU : Qlik Sense Son Kullanıcı
- C/QSDEV : Qlik Sense Geliştirici
- C/PBI : Power BI ile Veri Analizi
- MS/DA-100 : Analyzing Data with Power BI
- MS/10990C : Analyzing Data with SQL Server Reporting Services
- C/PBSSBI : Power BI ile Self Service BI
- C/DMDQ : Veri Yönetimi ve Veri Kalitesi
-
Data Engineer
Büyük Verinin İşlenmesi, Yönetimi, Veri Kalitesini Arttırma, Bulut Bilişim ve Veri Bilimi için Kodlama, Spark ve Hadoop gibi Dağıtık Mimariler ile Çalışma.
- MS/20777A : Implementing Microsoft Azure Cosmos DB Solutions
- C/PBSSBI : Power BI ile Self Service BI
- C/IRFDS : R Dili ve R ile Veri Analizi
- C/PDE : Python Dili Esasları
- C/IPFDS : Python Dili ve Python ile Veri Analizi
- C/PVA : Python ile Veri Analizi
- MS/20762C : Developing SQL Databases (Microsoft SQL Server)
- CMS/20764C : Administering a SQL Database Infrastructure
- MS/DP-300 : Administering Relational Databases on Microsoft Azure
- MS/20765C : Provisioning SQL Databases
- MS/10987C : Performance Tuning and Optimizing SQL Databases
- CMS/20767B : Implementing a SQL Data Warehouse
- MS/20768C : Developing SQL Data Models
- MS/10990C : Analyzing Data with SQL Server Reporting Services
- C/DMDQ : Veri Yönetimi ve Veri Kalitesi
- C/ADMT : İleri Veri Modelleme Teknikleri
- CMS/DP-203 : Data Engineering on Microsoft Azure
- C/AZSC-Synapse : Fundamentals of Azure Synapse Analytics
- C/BDA-Synapse : Data Analytics Solutions Using Azure Synapse Analytics
- MS/DP-500 : Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI
- CMS/DP-601T00A : Implementing a Lakehouse with Microsoft Fabric
- C/DAWS : Big Data Analysis with Spark
- C/PSS : PySpark ile Spark SQL
- C/VBL : Veri Bilimcileri için Linux
- C/VMUP : Veri Mimarisinde Ustalaşma Programı
-
Data Scientist
Yapay Zeka, Makine Öğrenimi, Derin Öğrenme Teknikleri ile Büyük Veri Kümelerinden Desen ve Eğilim Keşfetme
- C/PBSSBI : Power BI ile Self Service BI
- C/IRFDS : R Dili ve R ile Veri Analizi
- C/PDE : Python Dili Esasları
- C/IPFDS : Python Dili ve Python ile Veri Analizi
- C/PVA : Python ile Veri Analizi
- C/DMDQ : Veri Yönetimi ve Veri Kalitesi
- C/ADMT : İleri Veri Modelleme Teknikleri
- MS/AI-900 : Microsoft Azure AI Fundamentals
- MS/AI-100 : Designing and Implementing an Azure AI Solution
- MS/DP-100 : Designing and Implementing a Data Science Solution on Azure
- C/MOE : Makine Öğrenimi Esasları
- C/ADSB : Accelerated Data Science for Business
- C/AZSC-Synapse : Fundamentals of Azure Synapse Analytics
- MS/DP-500 : Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI
- CMS/DP-601T00A : Implementing a Lakehouse with Microsoft Fabric
- C/DAWS : Big Data Analysis with Spark
- C/PSS : PySpark ile Spark SQL
- C/VBL : Veri Bilimcileri için Linux
-
DB Developer
Veritabanı Sorgulama, Tasarım Prensipleri ve Geliştirme
-
BI Professional
Veri kaynaklarının Keşfi, Veri Kalitesini Arttırma, ETL, Veriambarı Tasarım Prensipleri, Veri Modelleme ve Raporlama
- MS/20762C : Developing SQL Databases (Microsoft SQL Server)
- C/QSDEV : Qlik Sense Geliştirici
- C/PBI : Power BI ile Veri Analizi
- MS/DA-100 : Analyzing Data with Power BI
- C/PBSSBI : Power BI ile Self Service BI
- CMS/20767B : Implementing a SQL Data Warehouse
- MS/20768C : Developing SQL Data Models
- MS/10990C : Analyzing Data with SQL Server Reporting Services
- C/AZSC-Synapse : Fundamentals of Azure Synapse Analytics
- C/BDA-Synapse : Data Analytics Solutions Using Azure Synapse Analytics
- MS/DP-500 : Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI
- CMS/DP-601T00A : Implementing a Lakehouse with Microsoft Fabric
- C/DMDQ : Veri Yönetimi ve Veri Kalitesi
- C/ADMT : İleri Veri Modelleme Teknikleri
-
Database Admin
Veritabanı yönetimi, optimizasyonu, performansı, felaketten kurtarma ve yüksek erişilebilirlik.